Project Euler \#147: Rectangles in crosshatched grids

This problem is a programming version of Problem 147 from projecteuler.net
In a 3×2 cross-hatched grid, a total of 37 different rectangles could be situated within that grid as indicated in the sketch.

There are 5 grids smaller than 3×2, vertical and horizontal dimensions being important, i.e. $1 \times 1,2 \times 1$, $3 \times 1,1 \times 2$ and 2×2. If each of them is cross-hatched, the following number of different rectangles could be situated within those smaller grids:

1x1: 1
2x1: 4
3x1: 8
1×2: 4
2x2: 18
Adding those to the 37 of the 3×2 grid, a total of 72 different rectangles could be situated within 3×2 and smaller grids.

How many different rectangles could be situated within $M \times N$ and smaller grids? To make the task more challenging, you need to output the number of upright and diagonal rectangles separately.

Since the numbers can be large, output them modulo $10^{9}+7$.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of one line containing two integers, M and N, separated by a space.

Constraints

$1 \leq T \leq 10000$
In test file \#1: $1 \leq M, N \leq 30$
In test file \#2: $1 \leq M, N \leq 50$
In test file \#3: $1 \leq M, N \leq 1000$
In test file \#4: $1 \leq M, N \leq 10^{9}$

Output Format
For each test case, output a single line containing two integers separated by single spaces:

- The number of upright rectangles.
- The number of diagonal rectangles.

Sample Input

1
32

Sample Output

Explanation

Of the 72 rectangles that could be situated within 3×2 and smaller grids, 40 of those are upright and 32 are diagonal.

