Project Euler \#148: Exploring Pascal's triangle.

This problem is a programming version of Problem 148 from projecteuler.net
We can easily verify that none of the entries in the first seven rows of Pascal's triangle are divisible by 7:

							1						
				1		1							
			1		2		1						
			1		3		3		1				
		1		4		6		4		1			
	1		5		10		10		5		1		
1		6		15		20		15		6		1	

However, if we check the first one hundred rows, we will find that only 2361 of the 5050 entries are not divisible by 7.

Find the number of entries which are not divisible by 7 in the first N rows and first R columns of Pascal's triangle. Here, "column" means a column when the triangle is written this way:

1						
1	1					
1	2	1				
1	3	3	1			
1	4	6	4	1		
1	5	10	10	5	1	
1	6	15	20	15	6	1
\vdots						

Since the answer can be very large, output it modulo $10^{9}+7$.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of one line containing two integers, N and R, separated by a space.

Constraints

$1 \leq T \leq 3 \times 10^{4}$
$0 \leq R \leq N \leq 10^{18}$
Test files \#01-\#03: $N \leq 5000$
Test files \#04-\#06: $R=N$

Test files \#07-\#09: $R \leq 5000$
Test files \#10-\#12: $N-R \leq 5000$
Test files \#13-\#15: No additional constraints.

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.

Sample Input

```
3
5
100 100
10050
```


Sample Output

```
12
2361
1622
```


Explanation

In the first test case, the following are the entries in the first 5 rows and first 3 columns: (highlighted in bold)

$\mathbf{1}$						
$\mathbf{1}$	$\mathbf{1}$					
$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$				
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{3}$	1			
$\mathbf{1}$	$\mathbf{4}$	$\mathbf{6}$	4	1		
1	5	10	10	5	1	
1	6	15	20	15	6	1
\vdots						

There are 12 entries all in all, and they are all not divisible by 7 . Thus, the answer is 12 .
The second test case is mentioned in the problem statement.

