Project Euler \#152: Writing 1/2 as a sum of inverse squares

This problem is a programming version of Problem 152 from projecteuler.net
There are several ways to write the number $1 / 2$ as a sum of inverse squares using distinct integers.
For instance, the numbers $2,3,4,5,7,12,15,20,28,35$ can be used:

$$
\frac{1}{2}=\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\frac{1}{12^{2}}+\frac{1}{15^{2}}+\frac{1}{20^{2}}+\frac{1}{28^{2}}+\frac{1}{35^{2}}
$$

In fact, only using integers between 2 and 45 inclusive, there are exactly three ways to do it, the remaining two being: $2,3,4,6,7,9,10,20,28,35,36,45$ and $2,3,4,6,7,9,12,15,28,30,35,36,45$.

How many ways are there to write the number $1 / D$ as a sum of inverse squares using distinct integers between 2 and N inclusive?

Input Format

Each test file contains two lines. One the first line there is an integer D, on the second line there is an integer N.

Constraints

- $2 \leq N \leq 100$
- $2 \leq D$
- D is a product of digits of some natural number.
- The answer is always >0

Output Format

Output a single number the answer to the problem.

Sample Input

45

Sample Output

