HackerRank

Project Euler #157: Solving the diophantine equation 1/a +1/b = p/10^n

This problem is a programming version of Problem 157 from projecteuler.net

Consider the diophantine equation $\frac{1}{a} + \frac{1}{b} = \frac{p}{10}$ with a, b, p positive integers and $a \le b$. This equation has 20 solutions that are listed below:

1 1 20	1 1 15	1 1 12	1 1 11	1 1 10
${1}+{1}={10}$	$\frac{}{1}+\frac{}{2}=\frac{}{10}$	$\frac{1}{1} + \frac{1}{5} = \frac{1}{10}$	$\frac{1}{1} + \frac{1}{10} = \frac{1}{10}$	$\frac{}{2}+\frac{}{2}=\frac{}{10}$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	1 , 1 _ 5
$\frac{}{2}+\frac{}{5}=\frac{}{10}$	$\frac{}{2}+\frac{}{10}=\frac{}{10}$	$\frac{1}{3}+\frac{1}{6}=\frac{1}{10}$	${3}+{15}={10}$	$\frac{}{4}+\frac{}{4}=\frac{}{10}$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{5} + \frac{1}{10} = \frac{3}{10}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{}{4}+\frac{}{20}=\frac{}{10}$	$rac{1}{5}+rac{1}{5}=rac{1}{10}$	$\frac{1}{5} + \frac{1}{10} - \frac{1}{10}$	$\frac{-}{6}+\frac{-}{30}=\frac{-}{10}$	$\frac{1}{10} + \frac{1}{10} = \frac{1}{10}$
1 1 1	1 , 1 _ 1	1 , 1 _ 1	1 , 1 _ 1	1 , 1 _ 1
$\frac{1}{11} + \frac{1}{110} - \frac{1}{10}$	$\frac{1}{12} + \frac{1}{60} - \frac{1}{10}$	$\frac{}{14}+\frac{}{35}=\frac{}{10}$	$\frac{1}{15} + \frac{1}{30} = \frac{1}{10}$	$\frac{1}{20} + \frac{1}{20} = \frac{1}{10}$

Let's make generalized version of this equation: $\frac{1}{a}+\frac{1}{b}=\frac{p}{p_1^{\alpha_1}\cdot p_2^{\alpha_2}}$ with positive integers α_1 , α_2 and primes p_1 , p_2 . How many solutions does this equation has for $1\leq \alpha_1\leq r_1, 1\leq \alpha_2\leq r_2$?

Note, that if tuple $\{a,b,p\}$ occurs as a solution of the equation for multiple α_1 , α_2 it should be calculated multiple times and not once.

Input Format

Each test file starts with a number T on a separate line which is the number of tests per file. T lines follow, each containing p_1 , r_1 , p_2 and r_2 separated by single spaces.

Constraints

- $1 \leqslant T \leqslant 10$
- $p_1
 eq p_2$ are primes
- $1 \leqslant r1, r2$
- $p_1^{r_1} \cdot p_2^{r_2} \leqslant 10^{18}$

Output Format

Output T lines, each containing an answer to the corresponding test.

Sample Input

Sample Output

20