Project Euler \#159: Digital root sums of factorisations.

This problem is a programming version of Problem 159 from projecteuler.net
A composite number can be factored many different ways.
For instance, not including multiplication by one, 24 can be factored in 7 distinct ways:

$$
\begin{aligned}
& 24=2 \times 2 \times 2 \times 3 \\
& 24=2 \times 3 \times 4 \\
& 24=2 \times 2 \times 6 \\
& 24=4 \times 6 \\
& 24=3 \times 8 \\
& 24=2 \times 12 \\
& 24=24
\end{aligned}
$$

Recall that the digital root of a number, in base 10, is found by adding together the digits of that number, and repeating that process until a number is arrived at that is less than 10.
Thus the digital root of 467 is 8 .
We shall call a Digital Root Sum ($D R S$) the sum of the digital roots of the individual factors of our number.

The chart below demonstrates all of the $D R S$ values for 24 .

Factorisation	Digital Root Sum
$2 \times 2 \times 2 \times 3$	9
$2 \times 3 \times 4$	9
$2 \times 2 \times 6$	10
4×6	10
3×8	11
2×12	5
24	6

The maximum Digital Root Sum of 24 is 11 .
The function $m d r s(n)$ gives the maximum Digital Root Sum of n. So $m d r s(24)=11$.
Find $\sum_{i=2}^{n} m d r s(i)$.

Input Format

First line of each file contains an integer T which is the number of testcases.
T lines follow, each containing one integer n.

Constraints

- $1 \leqslant T \leqslant 10^{5}$
- $3 \leqslant n \leqslant 10^{7}$

Output Format

Output T lines, one for each testcase.

Sample Input

10

Sample Output

```
51
```


Explanation

$$
\begin{aligned}
& m d r s(2)=2 \\
& m d r s(3)=3 \\
& m d r s(4)=4 \\
& m d r s(5)=5 \\
& m d r s(6)=6 \\
& m d r s(7)=7 \\
& m d r s(8)=8 \\
& m d r s(9)=9 \\
& m d r s(10)=2+5=7
\end{aligned}
$$

