Project Euler \#162: Hexadecimal numbers

This problem is a programming version of Problem 162 from projecteuler.net
In the hexadecimal number system numbers are represented using 16 different digits:

$$
0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F
$$

The hexadecimal number AF when written in the decimal number system equals $10 \times 16+15=175$.
In the $3-$ digit hexadecimal numbers $10 A, 1 A 0, A 10$, and $A 01$ the digits 0,1 and A are all present.
Like numbers written in base ten we write hexadecimal numbers without leading zeroes.
How many hexadecimal numbers containing at most n hexadecimal digits exist with all of the digits 0,1 , and A present at least once?

Give your answer modulo $\left(10^{9}+7\right)$.

Input Format

The first line contains an integer, n.

Constraints

- $3 \leqslant n \leqslant 100$

Output Format

Print the answer modulo $1000000007=10^{9}+7$.
Sample Input

3

Sample Output

4

