Project Euler \#167: Investigating Ulam sequences

This problem is a programming version of Problem 167 from projecteuler.net
For two positive integers a and b, the Ulam sequence $U(a, b)$ is defined by $U(a, b)_{1}=a, U(a, b)_{2}=b$ and for $k>2, U(a, b)_{k}$ is the smallest integer greater than $U(a, b)_{(k-1)}$ which can be written in exactly one way as the sum of two distinct previous members of $U(a, b)$.

For example, the sequence $U(1,2)$ begins with

$$
1,2,3=1+2,4=1+3,6=2+4,8=2+6,11=3+8
$$

5 does not belong to it because $5=1+4=2+3$ has two representations as the sum of two previous members, likewise $7=1+6=3+4$.

Find $U(2,2 n+1)_{k}$

Input Format

Two space-separated integers n and k are given on first line.

Constraints

- $2 \leqslant n \leqslant 10$
- $1 \leqslant k \leqslant 10^{11}$

Output Format

Print one integer which is the answer to the problem.
Sample Input 0

```
2 10
```


Sample Output 0

Explanation 0

Beginning of $U(2,5)$ is

$$
2,5,7,9,11,12,13,15,19,23,27,29,35,37,41,43, \cdots
$$

