Project Euler \#171: Finding numbers for which the sum of the squares of the digits is a square

This problem is a programming version of Problem 171 from projecteuler.net
For a positive integer n, let $f(n)$ be the sum of the squares of the digits (in base 10) of n, e.g.
$f(3)=3^{2}=9$,
$f(25)=2^{2}+5^{2}=4+25=29$,
$f(442)=4^{2}+4^{2}+2^{2}=16+16+4=36$
Find the sum of all $n, 0 \leq n \leq k$, such that $f(n)$ is a perfect square modulo $10^{9}+7$.

Input Format

The first line of input contains the only integer k.

Constraints

$1 \leq k \leq 10^{100}$

Output Format

Output the only integer which is the answer for the problem.

Sample Input 0

100

Sample Output 0

826

Explanation 0

You have to sum up following numbers:
$1,2,3,4,5,6,7,8,9,10,20,30,34,40,43,50,60,68,70,80,86,90,100$.

