Project Euler \#172: Investigating numbers with few repeated digits

This problem is a programming version of Problem 172 from projecteuler.net
How many positive k-digit numbers n (without leading zeroes) are there such that no digit occurs more than m times in n ? Output the answer modulo $10^{9}+7$.

Input Format

The first line of input contains two integers m and t. Here, t is the number of queries. The following t lines contain an integer k each.

Constraints

- $1 \leq m \leq 10^{5}$
- $1 \leq t \leq 10^{5}$
- $1 \leq k \leq \min \left(10 \times m, 10^{5}\right)$

Output Format

For each query, print the integer which is the answer to the problem modulo $10^{9}+7$.
Sample Input 0

```
32
3
4
```


Sample Output 0

```
900
8991
```


Explanation 0

For the first query, each 3 -digit number is valid. For the second query, each 4 -digit number except for $1111,2222,3333,4444,5555,6666,7777,8888$, and 9999 is valid.

