Project Euler #173: Using up to one million tiles how many different "hollow" square laminae can be formed?

This problem is a programming version of Problem 173 from projecteuler.net

We shall define a square lamina to be a square outline with a square "hole" so that the shape possesses vertical and horizontal symmetry. For example, using exactly thirty-two square tiles we can form two different square laminae:

With one-hundred tiles, and not necessarily using all of the tiles at one time, it is possible to form fortyone different square laminae.

Using up to n tiles how many different square laminae can be formed?

Input Format

The only integer $m{n}$ is given on the first line.

Constraints

• $1 \le n \le 10^{12}$

Output Format

Print the only integer which is the number of such square laminae.

Sample Input 0

Sample Output 0

41

Explanation 0

As written in the statement, for $100\ {\rm tiles}$ there are ony $41\ {\rm different}\ {\rm laminaes}.$