Project Euler \#175: Fractions involving the number of different ways a number can be expressed as a sum of powers of 2.

This problem is a programming version of Problem 175 from projecteuler.net
Define $f(0)=1$ and $f(n)$ to be the number of ways to write n as a sum of powers of 2 where no power occurs more than twice.

For example, $f(10)=5$ since there are five different ways to express 10 :
$10=8+2=8+1+1=4+4+2=4+2+2+1+1=4+4+1+1$
It can be shown that for every fraction $p / q(p \geq 0, q \geq 0)$ there exists at least one integer n such that $f(n) / f(n-1)=p / q$.

For instance, the smallest n for which $f(n) / f(n-1)=13 / 17$ is 241 .
The binary expansion of 241 is 11110001 .
Reading this binary number from the most significant bit to the least significant bit there are 4 one's, 3 zeroes and 1 one. We shall call the string $4,3,1$ the Shortened Binary Expansion of 241 .

Find the Shortened Binary Expansion of the smallest n for which
$f(n) / f(n-1)=p / q$

Input Format

The first line of input contains two space-separated integers p and q.

Constraints

- $1 \leq p, q \leq 10^{16}$

Output Format

Print your answer as comma-separated integers without any whitespaces.

Sample Input 0

```
1317
```


Sample Output 0

4,3,1

Explanation 0

As described in statement, answer for $p / q=13 / 17$ is $4,3,1$.

