Project Euler \#179: Consecutive positive divisors

This problem is a programming version of Problem 179 from projecteuler.net
Find the number of integers $1<n<k$, for which n and $n+1$ have the same number of positive divisors. For example, 14 has the positive divisors $1,2,7,14$ while 15 has $1,3,5,15$.

Input Format

First line of input contains single integer t which is the number of testcases. All of the following t lines contain single integer k each.

Constraints

- $1 \leq t \leq 10^{6}$
- $3 \leq k \leq 10^{7}$

Output Format

For each testcase output the only integer which is the answer to the problem.

Sample Input 0

```
3
3
15
100
```


Sample Output 0

```
1
2
15
```


Explanation 0

The only $n<15$ are 2 and 14 .

