Project Euler \#180: Rational zeros of a function of three variables.

This problem is a programming version of Problem 180 from projecteuler.net
For any integer n, consider the three functions

- $f_{1, n}(x, y, z)=x^{n+1}+y^{n+1}-z^{n+1}$
- $f_{2, n}(x, y, z)=(x y+y z+z x)\left(x^{n-1}+y^{n-1}-z^{n-1}\right)$
- $f_{3, n}(x, y, z)=x y z\left(x^{n-2}+y^{n-2}-z^{n-2}\right)$
and their combination

$$
f_{n}(x, y, z)=f_{1, n}(x, y, z)+f_{2, n}(x, y, z)-f_{3, n}(x, y, z)
$$

We call (x, y, z) a golden triple of order k if x, y and z are all rational numbers of the form $\frac{a}{b}$ with $0<a<b \leq k$ and there is (at least) one integer n, so that $f_{n}(x, y, z)=0$.

Let $s(x, y, z)=x+y+z$. Let $t=\frac{u}{v}$ be the sum of all distinct $s(x, y, z)$ for all golden triples (x, y, z) of order k. All the $s(x, y, z)$ and t must be in reduced form.

Find $u+v$.

Input Format

Input contains the only integer k which is the order of golden triples.

Constraints

- $2 \leq k \leq 35$

Output Format

Output the only number which is the answer to the problem.
Sample Input 0

2

Sample Output 0

1

There are no such x, y and z that $f_{n}(x, y, z)=0$ for $k=2$, so $t=\frac{0}{1}$ and you should output 1 .

