HackerRank

Project Euler #180: Rational zeros of a function of three variables.

This problem is a programming version of Problem 180 from projecteuler.net

For any integer n, consider the three functions

- $f_{1,n}(x,y,z) = x^{n+1} + y^{n+1} z^{n+1}$
- $f_{2,n}(x,y,z) = (xy+yz+zx)(x^{n-1}+y^{n-1}-z^{n-1})$
- $f_{3,n}(x,y,z) = xyz(x^{n-2}+y^{n-2}-z^{n-2})$

and their combination

$$f_n(x,y,z) = f_{1,n}(x,y,z) + f_{2,n}(x,y,z) - f_{3,n}(x,y,z)$$

We call (x, y, z) a golden triple of order k if x, y and z are all rational numbers of the form $\frac{a}{b}$ with $0 < a < b \le k$ and there is (at least) one integer n, so that $f_n(x, y, z) = 0$.

Let s(x, y, z) = x + y + z. Let $t = \frac{u}{v}$ be the sum of all distinct s(x, y, z) for all golden triples (x, y, z) of order k. All the s(x, y, z) and t must be in reduced form.

Find u + v.

Input Format

Input contains the only integer $m{k}$ which is the order of golden triples.

Constraints

• $2 \leq k \leq 35$

Output Format

Output the only number which is the answer to the problem.

Sample Input 0

2

Sample Output 0

1

Explanation 0

There are no such x, y and z that $f_n(x,y,z)=0$ for k=2, so $t=rac{0}{1}$ and you should output 1.