Project Euler \#186: Connectedness of a network.

This problem is a programming version of Problem 186 from projecteuler.net
Here are the records from a busy telephone system with one million users:

RecNr	Caller	Called
1	200007	100053
2	600183	500439
3	600863	701497
\ldots	\ldots	\ldots

The telephone number of the caller and the called number in record n are $\operatorname{Caller}(n)=S_{2 n-1}$ and $\operatorname{Called}(n)=S_{2 n}$ where $S_{1,2,3 \ldots .}$ come from the "Lagged Fibonacci Generator":

For $1 \leq k \leq 55, S_{k}=100003-200003 k+300007 k^{3}(\bmod 1000000)$
For $56 \leq k, S_{k}=S_{k-24}+S_{k-55}(\bmod 1000000)$
If $\operatorname{Caller}(n)=C a l l e d(n)$ then the user is assumed to have misdialled and the call fails; otherwise the call is successful.

From the start of the records, we say that any pair of users X and Y are friends if X calls Y or viceversa. Similarly, X is a friend of a friend of Z if X is a friend of Y and Y is a friend of Z; and so on for longer chains.

The Prime Minister's phone number is $N U M B E R$. After how many successful calls, not counting misdials, will $p \%$ of the users (including the PM) be a friend, or a friend of a friend etc., of the Prime Minister?

Input Format

Every input file contains exactly one line with two integers separated by a single space: $N U M B E R$ and p.

Constraints

$N U M B E R$ is a 6-digit integer from 000000 to 999999.
$1 \leq p \leq 100$.

Output Format

Output the only number - an answer to the problem.

Sample Input

Sample Output

622572

