Project Euler \#188:
 The
 hyperexponentiation of a number

This problem is a programming version of Problem 188 from projecteuler.net
The hyperexponentiation or tetration of a number a by a positive integer b, denoted by $a \uparrow \uparrow b$ or ${ }^{b} a$, is recursively defined by:
$a \uparrow \uparrow 1=a$,
$a \uparrow \uparrow(k+1)=a^{a \uparrow \uparrow k}$.
Thus we have e.g. $3 \uparrow \uparrow 2=3^{3}=27$, hence $3 \uparrow \uparrow 3=3^{27}=7625597484987$ and $3 \uparrow \uparrow 4$ is roughly $10^{3.6383346400240996 \cdot 10^{12}}$.

Find $a \uparrow \uparrow b(\bmod m)$.

Input Format

The first line of each test file contains a single integer Q which is the number of queries you have to process. Q lines follow, each containing three integers separated by single spaces: a, b and m.

Constraints

- $1 \leq Q \leq 10$
- $1 \leq a, b, m \leq 10^{18}$

Output Format

Print exactly Q lines with the corresponding $a \uparrow \uparrow b(\bmod m)$ on each line.

Sample Input 0

```
1
3310000000000000000000
```


Sample Output 0

[^0]
[^0]: 7625597484987

