Project Euler \#191: Prize Strings

This problem is a programming version of Problem 191 from projecteuler.net
A particular school offers cash rewards to children based on their score history.
During an l-day period, a string (scores) is formed, for each child, in the following way:

$$
s_{1}\left|s_{2}\right| \ldots \mid s_{l}
$$

where $0 \leq s_{i} \leq c-1$ is the score of the child at the $i^{\text {th }}$ day.
If they get 1 for m consecutive days or 0 on more than n occasion(s) then they forfeit their prize.
For a given l, n, m and c, let's call strings for which the child gets his prize prize strings, and denote $f(l, n, m, c)$ the number of prize strings for these parameters.

For example, with $l=4$ (4-day period), $n=1, m=3$ and $c=3$, it can be verified that $f(4,1,3,3)=43$ and here are the different prize strings that can be formed:
$2|2| 2|2 \quad 2| 2|2| 1 \quad 2|2| 2|0 \quad 2| 2|1| 2 \quad 2|2| 1|1 \quad 2| 2|1| 0 \quad 2|2| 0|2 \quad 2| 2|0| 1 \quad 2|1| 2|2 \quad 2| 1|2| 1$
$2|1| 2|0 \quad 2| 1|1| 2 \quad 2|1| 1|0 \quad 2| 1|0| 2 \quad 2|1| 0|1 \quad 2| 0|2| 2 \quad 2|0| 2|1 \quad 2| 0|1| 2 \quad 2|0| 1|1 \quad 1| 2|2| 2$
$1|2| 2|1 \quad 1| 2|2| 0 \quad 1|2| 1|2 \quad 1| 2|1| 1 \quad 1|2| 1|0 \quad 1| 2|0| 2 \quad 1|2| 0|1 \quad 1| 1|2| 2 \quad 1|1| 2|1 \quad 1| 1|2| 0$
$1|1| 0|2 \quad 1| 1|0| 1 \quad 1|0| 2|2 \quad 1| 0|2| 1 \quad 1|0| 1|2 \quad 1| 0|1| 1 \quad 0|2| 2|2 \quad 0| 2|2| 1 \quad 0|2| 1|2 \quad 0| 2|1| 1$
$0|1| 2|2 \quad 0| 1|2| 1 \quad 0|1| 1 \mid 2$.
You are given L, N, m and c, what is $\sum_{l=1}^{L} \sum_{n=1}^{N} f(l, n, m, c) \bmod 10^{9}+7$.

Input Format

The only line of each test case contains exactly four integers separated by single spaces: L, N, m and c

Constraints

- $1 \leq N \times L \leq 10^{7}$
- $1 \leq m \leq L$
- $2 \leq c \leq 10^{18}$

Output Format

Print the answer modulo $10^{9}+7$

Sample Input

```
4 1 3 3
```


Sample Output

Explanation

$f(4,1,3,3)=43, f(3,1,3,3)=19, f(2,1,3,3)=8$ and $f(1,1,3,3)=3$. Hence the sum is 73 .

