Project Euler \#192: Best Approximations

This problem is a programming version of Problem 192 from projecteuler.net
Let x be a real number. A best approximation to x for the denominator bound d is a rational number $\frac{r}{s}$ in reduced form, with $s \leq d$, such that any rational number which is closer to x than $\frac{r}{s}$ has a denominator larger than d :
$\left|\frac{p}{q}-x\right|<\left|\frac{r}{s}-x\right| \Longrightarrow q>d$
For example, the best approximation to $\sqrt{13}$ for the denominator bound 20 is $\frac{18}{5}$ and the best approximation to $\sqrt{13}$ for the denominator bound 30 is $\frac{101}{28}$.

Find the sum of all denominators of the best approximations to \sqrt{n} for the denominator bound b, where n is not a perfect square and $1<n \leq m$.

Input Format

The only line of each test file contains two integer numbers: m and b.

Constraints

- $2 \leq m \leq 15 \times 10^{5}$
- $2 \leq b \leq 10^{18}$

Output Format

Print exactly one number which is the answer to the problem modulo
$1000000016000000063=\left(10^{9}+7\right) \times\left(10^{9}+9\right)$

Sample Input 0

```
310
```


Sample Output 0

```
12
```


Explanation 0

The best approximation to $\sqrt{2}$ is $\frac{7}{5}$. The best approximation to $\sqrt{3}$ is $\frac{12}{7} .5+7=12$.

