Project Euler \#193: Squarefree Numbers

A positive integer n is called squarefree, if no square of a prime divides n, thus $1,2,3,5,6,7,10,11$ are squarefree, but not $4,8,9,12$.

Similarly, let us define a positive integer n to be $k^{\text {th }}$ powerfree if no $k^{\text {th }}$ power of a prime divides n. For example, 40 is $4^{\text {th }}$ powerfree, but not 48 .

You are given two positive integers, N, and K. Find the number of $K^{\text {th }}$ powerfree positive integers $\leq N$

Input Format

The only line of the input contains two integers, N, and K.

Constraints

$1 \leq N, K \leq 10^{18}$

Output Format

Print one line containing the number of $K^{\text {th }}$ powerfree positive integers $\leq N$

Sample Input 0

```
10 2
```


Sample Output 0

```
    7
```


Explanation 0

We have to find the number of $2^{\text {nd }}$-powerfree (squarefree) integers ≤ 10. These integers are $1,2,3,5,6,7,10$

Sample Input 1

```
103
```


Sample Output 1

9

Explanation 1

All positive integers ≤ 10 are $3^{\text {rd }}$-powerfree, except 8 . (Since $8=2^{3}$ is divisible by 2^{3})

