HackerRank

Project Euler #193: Squarefree Numbers

A positive integer n is called squarefree, if no square of a prime divides n, thus 1, 2, 3, 5, 6, 7, 10, 11 are squarefree, but not 4, 8, 9, 12.

Similarly, let us define a positive integer n to be k^{th} powerfree if no k^{th} power of a prime divides n. For example, 40 is 4^{th} powerfree, but not 48.

You are given two positive integers, N, and K. Find the number of $K^{ ext{th}}$ powerfree positive integers $\leq N$

Input Format

The only line of the input contains two integers, N, and K.

Constraints

 $1 \le N, K \le 10^{18}$

Output Format

Print one line containing the number of $K^{
m th}$ powerfree positive integers $\leq N$

Sample Input 0

10 2

Sample Output 0

7

Explanation 0

We have to find the number of 2^{nd} -powerfree (squarefree) integers ≤ 10 . These integers are 1, 2, 3, 5, 6, 7, 10

Sample Input 1

10 3

Sample Output 1

9

Explanation 1

All positive integers ≤ 10 are $3^{
m rd}$ -powerfree, except 8. (Since $8=2^3$ is divisible by 2^3)

1/2