Project Euler \#195: Inscribed circles of triangles with one angle of 60 degrees

This problem is a programming version of Problem 195 from projecteuler.net
Let's call an integer sided triangle with exactly one angle of 60 degrees a 60 -degree triangle.
Let r be the radius of the inscribed circle of such a 60 -degree triangle.
There are 1234 60-degree triangles for which $r \leq 100$.
Let $T(n)$ be the number of 60 -degree triangles for which $r \leq n$, so $T(100)=1234, T(1000)=22767$, and $T(10000)=359912$.

Find $T(n)$ for some n.

Input Format

First line of each test file contains a single integer Q which is the number of queries in the file. Q lines follow with a single integer n_{i} on each.

Constraints

- $1 \leq Q \leq 10$
- $1 \leq n_{i} \leq 10^{9}$
- Sum of all n_{i} in a test file $\leq 10^{9}$

Output Format

Output exactly Q lines with a single integer on each. The integer of the i-th line should be the answer for the query with n_{i} as an input.

Sample Input 0

3
100
1000
10000

Sample Output 0

```
1234
22767
359912
```

