Project Euler \#196: Prime triplets

This problem is a programming version of Problem 196 from projecteuler.net
Build a triangle from all positive integers in the following way:

```
1
2 3
4 5 6
7
11}121213141
16}171718191920 2
22}23244252627 2
29}303031 32 33 34 35 3
37}3884940414243444
46}4744849 50 51 52 53 54 55
56}5575858596061 62 63 64 65 66
. . .
```

Each positive integer has up to eight neighbours in the triangle.
A set of three primes is called a primetriplet if one of the three primes has the other two as neighbours in the triangle.

For example, in the second row, the prime numbers 2 and 3 are elements of some prime triplet.
If row 8 is considered, it contains two primes which are elements of some prime triplet, i.e. 29 and 31 . If row 9 is considered, it contains only one prime which is an element of some prime triplet: 37 .

Define $S(n)$ as the sum of the primes in row n which are elements of any prime triplet.
Then $S(8)=60$ and $S(9)=37$.
You are given that $S(10000)=950007619$.
Find $S(a)+S(b)$.

Input Format

The only line of each test file contains exactly two integers separated by a single space: a and b.

Constraints

- $1 \leq a, b \leq 10^{7}$

Output Format

Output exactly one number that equals to $S(a)+S(b)$.

Sample Input 0

```
8
```

Sample Output 0

97

Sample Input 1

```
    910000
```


Sample Output 1

950007656

