Project Euler \# 200: Find the 200th prime-proof sqube containing the contiguous substring "200"

This problem is a programming version of Problem 200 from projecteuler.net
We shall define a sqube to be a number of the form, $p^{2} q^{3}$, where p and q are distinct primes.
For example, $200=5^{2} 2^{3}$ or $120072949=23^{2} 61^{3}$.
The first five squbes are $72,108,200,392$, and 500 .
Interestingly, 200 is also the first number for which you cannot change any single digit to make a prime; we shall call such numbers, prime-proof. The next prime-proof sqube which contains the contiguous substring "200" is 1992008. Note that changing a digit may result in appearance of the leading zeroes - in the case with 200 as a number we can change the first digit 2 to 0 , but the resulting number $000=0$ is not a prime number and doesn't change the fact that 200 is prime-proof.

You're given the contiguous sub-string s and some queries n_{i}. For each query, find the n_{i}-th prime-proof sqube containing the contiguous sub-string s.

Input Format

The first line of each file contains s which is the sub-string from the problem statement. Next line contains a single integer q which is the number of queries per test file. q lines follow, each containing the corresponding n_{i}.

Constraints

- s is a string representation of some number between 100 and 999
- $1 \leq q \leq 25000$
- $1 \leq n_{i} \leq 10^{6}$
- For each query, the answer is less than 10^{15}.

Output Format

Print exactly q lines with the answers for the all q queries on each.

Sample Input 0

Sample Output 0

200
1992008

Sample Input 1

632
3
1
3
2

Sample Output 1

963272
256328

