Project Euler \# 203: Squarefree Binomial Coefficients

This problem is a programming version of Problem 203 from projecteuler.net
The binomial coefficients ${ }^{n} C_{k}$ can be arranged in triangular form, Pascal's triangle, like this:

							1							
					1		1							
				1		2		1						
				1		3		3		1				
		1	1		4		6		4		1			
	1	1		5			10		10		5		1	
1						15		20		15		6		1

It can be seen that the first eight rows of Pascal's triangle contain twelve distinct numbers:
$1,2,3,4,5,6,7,10,15,20,21$ and 35.
A positive integer n is called squarefree if no square of a prime divides n. Of the twelve distinct numbers in the first eight rows of Pascal's triangle, all except 4 and 20 are squarefree. The sum of the distinct squarefree numbers in the first eight rows is 105 .

Find the sum of the distinct squarefree numbers in the first K rows of Pascal's triangle.
Since the answer can be huge, output it modulo $10^{9}+7$.

Input Format

First line of each test file contains a single integer Q which is the number of queries per this file. Q lines follow each containing a single integer K_{i} that is the number of the rows in the Pascal's triangle.

Constraints

- $1 \leq Q \leq 150$
- $1 \leq K_{i} \leq 15 \times 10^{4}$

Output Format

Output exactly Q lines with the answer modulo $10^{9}+7$ for the i-th query on i-th line.

Sample Input 0

Sample Output 0

Explanation 0

$(1+2+3+5+6+7+10+15+21+35) \bmod \left(10^{9}+7\right)=105$

