Project Euler \#205: Dice Game

This problem is a programming version of Problem 205 from projecteuler.net
Peter has $n_{p} s_{p}$-sided dice, each with faces numbered $1,2, \ldots, s_{p}$.
Colin has $n_{c} s_{c}$-sided dice, each with faces numbered $1,2, \ldots, s_{c}$.
Both Peter's and Colin's dice are uniform and fair - for each die every outcome occurs with the equal probability of $\frac{1}{s_{p}}$ in Peter's case and $\frac{1}{s_{c}}$ in Colin's case.

Peter and Colin roll their dice and compare totals: the highest total wins. The result is a draw if the totals are equal.

What is the probability that s_{p}-sided Pete beats s_{c}-sided Colin? If the answer is $\frac{p}{q}$, then give it as $p \times q^{-1}(\bmod 1012924417)$.

Input Format

The first line of each test file contains a single integer q, which is the number of queries per this file. q lines follow with 4 integers separated by single spaces on each: the corresponding n_{p}, s_{p}, n_{c} and s_{c}.

Constraints

- $1 \leq q, n_{p}, n_{c}$
- $4 \leq s_{p}, s_{c}$
- $\quad \sum \quad \max \left(n_{p} \times s_{p}, n_{c} \times s_{c}\right) \leq 10^{6}$ all queries per test file

Output Format

Print exactly q lines with the answer for the corresponding query on each.
Sample Input 0

```
1
14414
```


Sample Output 0

```
6 3 3 0 7 7 7 6 1
```


Explanation 0

There are 16 combinations in total. Peter wins Colin in 6 of them:

- Peter: 2, Colin: 1
- Peter: 3, Colin: 1
- Peter: 3, Colin: 2
- Peter: 4, Colin: 1
- Peter: 4, Colin: 2
- Peter: 4 , Colin: 3
$6 / 16=3 / 8$
$3 \times 8^{-1}=3 \times 886308865=633077761(\bmod 1012924417)$

