Project Euler \# 207: Integer partition equations

This problem is a programming version of Problem 207 from projecteuler.net
For some positive integers k, there exists an integer partition of the form $4^{t}=2^{t}+k$, where $4^{t}, 2^{t}$ and k are all positive integers and t is a real number.

The first two such partitions are $4^{1}=2^{1}+2$ and $4^{1.5849625 \ldots}=2^{1.5849625 \ldots}+6$.
Partitions where t is also an integer are called perfect.
For any $m>1$ let $P(m)$ be the proportion of such partitions that are perfect with $k \leq m$.
Thus $P(6)=1 / 2$.
In the following table are listed some values of $P(m)$
$P(5)=1 / 1$
$P(10)=1 / 2$
$P(15)=2 / 3$
$P(20)=1 / 2$
$P(25)=1 / 2$
$P(30)=2 / 5$
$P(180)=1 / 4$
$P(185)=3 / 13$
Find the smallest m for which $P(m)<a / b$.

Input Format

First line of each test file contains a single integer q that is the number of queries per test file. q lines follow, with two integers a and b separated by a single space on each.

Constraints

- $1 \leq q \leq 3 \times 10^{5}$
- $1 \leq a<b \leq 10^{18}$

Output Format

Print exactly q lines with an answer for the corresponding query on each.

Sample Input 0

Sample Output 0

6
30

Explanation 0

$P(2)=P(3)=P(4)=P(5)=1 / 1>2 / 3$, but $P(6)=1 / 2<2 / 3$, therefore, an answer for the first query is 6 .
$P(30)=2 / 5$, which is the first value less than $9 / 20$ among all $P(m)$ where $1<m \leq 30$.

