HackerRank

Project Euler #207: Integer partition equations

This problem is a programming version of Problem 207 from projecteuler.net

For some positive integers k, there exists an integer partition of the form $4^t=2^t+k$, where 4^t , 2^t and k are all positive integers and t is a real number.

The first two such partitions are $4^1=2^1+2$ and $4^{1.5849625...}=2^{1.5849625...}+6$.

Partitions where t is also an integer are called perfect.

For any m>1 let P(m) be the proportion of such partitions that are perfect with $k\leq m$. Thus P(6)=1/2.

In the following table are listed some values of P(m)

$$P(5) = 1/1$$

$$P(10) = 1/2$$

$$P(15) = 2/3$$

$$P(20) = 1/2$$

$$P(25) = 1/2$$

$$P(30) = 2/5$$

. . .

$$P(180) = 1/4$$

$$P(185) = 3/13$$

Find the smallest m for which P(m) < a/b.

Input Format

First line of each test file contains a single integer q that is the number of queries per test file. q lines follow, with two integers a and b separated by a single space on each.

Constraints

•
$$1 < q < 3 \times 10^5$$

•
$$1 \le a < b \le 10^{18}$$

Output Format

Print exactly q lines with an answer for the corresponding query on each.

Sample Input 0

Sample Output 0

6 30

Explanation 0

P(2)=P(3)=P(4)=P(5)=1/1>2/3, but P(6)=1/2<2/3, therefore, an answer for the first query is 6.

P(30) = 2/5, which is the first value less than 9/20 among all P(m) where $1 < m \leq 30$.