Project Euler \# 209: Circular Logic

This problem is a programming version of Problem 209 from projecteuler.net
A k-input binary truth table is a map from k input bits (binary digits, 0 [false] or 1 [true]) to 1 output bit. For example, the 2 -input binary truth tables for the logical $A N D$ and $X O R$ functions are:

x	y	x AND y	x XOR y
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

How many n-input binary truth tables, τ, satisfy the formula
$\tau\left(F_{1}\left(a_{1}, a_{2}, \ldots, a_{n}\right), F_{2}\left(a_{1}, a_{2}, \ldots, a_{n}\right), \ldots, F_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)$ AND
$\tau\left(G_{1}\left(a_{1}, a_{2}, \ldots, a_{n}\right), G_{2}\left(a_{1}, a_{2}, \ldots, a_{n}\right), \ldots, G_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right)=0$ for all n-bit inputs $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$?

Input Format

The first line of each test file contains a single integer q that is the number of queries per test file. q blocks follow. On the first line of each block there is a single integer n. n lines follow with the descriptions of the functions F_{i} on each line. n lines follow then with the descriptions of the functions G_{i} on each line.

Every description follow the grammar described below:
Formula \rightarrow Summand \mid Summand + Formula
Summand $\rightarrow 0|1|$ Product
Product \rightarrow Letter \mid Letter\&Product
Letter \rightarrow aIndex
Index $\rightarrow 1$..n
where \& means logical $A N D,+$ means logical $X O R$, aIndex result into $a_{1} \ldots a_{n}$.
For example, one of the possible function descriptions could look as follows:
$a 1 \& a 2+a 1+1$
One should interprete this as the function $\left(a_{1} A N D a_{2}\right) X O R a_{1} X O R 1$

Constraints

- $1 \leq q \leq 10$
- $1 \leq n \leq 6$
- Every description of a function has length <600. Moreover, every possible summand occurs in each description not more than once.

Output Format

Print exactly one number, which is the answer to the problem.

Sample Input 0

```
1
1
a1
a1+1
```


Sample Output 0

3

Explanation 0

Let's look at all possible τ :

- $\tau(x)=0$. Then it doesn't depend on $a 1$ and the statement is always true
- $\tau(x)=1$. It also doesn't depend on $a 1$ but now the statement is always false
- $\tau(x)=x$ and $\tau(x)=x X O R 1$ both lead us to the statement $a 1 A N D(a 1 X O R 1)=0$ which is always true.

That said, our answer is 3 .

Sample Input 1

Sample Output 1

2

Explanation 1

Using the same logic as in previous sample, we can deduce that $\tau(x)=0$ is good and $\tau(x)=1$ is bad. Let's take a look into $\tau(x)=x$ and $\tau(x)=x X O R 1$:

- $\tau(x)=x$. After substitution we get $a 1 A N D 0=0$ which is always true.
- $\tau(x)=x X O R 1$. Now we get $(a 1 X O R 1) A N D 1=0$. It is wrong for $a 1=0$.

That leaves us with only two good τ.

Sample Input 2

$a 1 \& a 2+a 2+a 1+1$
$a 2+a 1$

Sample Output 2

4
5

Sample Input 3

2
3
$a 2 \& a 3+a 1 \& a 3+a 1$
$a 1 \& a 2 \& a 3+a 2 \& a 3+a 2$
$a 2 \& a 3+a 3+a 2$
a1\&a2\&a3+a1\&a3
$a 2 \& a 3+a 1 \& a 3+a 1 \& a 2+a 2$
$a 2 \& a 3+a 1 \& a 3+a 3+a 1 \& a 2+a 1$
3
$a 1 \& a 2 \& a 3+a 2 \& a 3+a 3+a 2+a 1$
$a 1 \& a 2 \& a 3+a 2 \& a 3+a 1 \& a 2+1$
$a 1 \& a 2 \& a 3+a 2 \& a 3+a 1 \& a 3+a 1 \& a 2+a 1$
$a 1 \& a 2 \& a 3+a 2 \& a 3+a 3+a 1 \& a 2+a 2+a 1+1$
$a 1 \& a 2 \& a 3+a 2 \& a 3+a 3+a 1 \& a 2+a 2+a 1$
$a 1 \& a 2 \& a 3+a 1 \& a 3+a 1 \& a 2+a 2+a 1+1$

Sample Output 3

