HackerRank

Project Euler #209: Circular Logic

This problem is a programming version of Problem 209 from projecteuler.net

A k-input binary truth table is a map from k input bits (binary digits, $0 \ [false]$ or $1 \ [true]$) to 1 output bit. For example, the 2-input binary truth tables for the logical AND and XOR functions are:

х	y	x and y	x XOR y
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

How many n-input binary truth tables, τ , satisfy the formula $\tau(F_1(a_1,a_2,\ldots,a_n),F_2(a_1,a_2,\ldots,a_n),\ldots,F_n(a_1,a_2,\ldots,a_n))$ AND $\tau(G_1(a_1,a_2,\ldots,a_n),G_2(a_1,a_2,\ldots,a_n),\ldots,G_n(a_1,a_2,\ldots,a_n))=0$ for all n-bit inputs (a_1,a_2,\ldots,a_n) ?

Input Format

The first line of each test file contains a single integer q that is the number of queries per test file. q blocks follow. On the first line of each block there is a single integer n. n lines follow with the descriptions of the functions F_i on each line. n lines follow then with the descriptions of the functions G_i on each line.

Every description follow the grammar described below:

 $Formula
ightarrow Summand | Summand + Formula \ Summand
ightarrow 0 | 1 | Product$

Product
ightarrow Letter | Letter & Product |

Letter
ightarrow a Index

Index
ightarrow 1..n

where & means logical AND, + means logical XOR, aIndex result into $a_1 \ldots a_n$.

For example, one of the possible function descriptions could look as follows:

a1&a2+a1+1

One should interprete this as the function $(a_1 \ AND \ a_2) \ XOR \ a_1 \ XOR \ 1$

Constraints

- $1 \le q \le 10$
- $1 \le n \le 6$
- \circ Every description of a function has length < 600. Moreover, every possible summand occurs in each description not more than once.

Output Format

Print exactly one number, which is the answer to the problem.

Sample Input 0

```
1
1
a1
a1+1
```

Sample Output 0

```
3
```

Explanation 0

Let's look at all possible au:

- ullet au(x)=0. Then it doesn't depend on a1 and the statement is always true
- au(x)=1. It also doesn't depend on a1 but now the statement is always false
- au(x)=x and au(x)=x XOR 1 both lead us to the statement a1 AND (a1 XOR 1)=0 which is always true.

That said, our answer is 3.

Sample Input 1

```
1
1
al
0
```

Sample Output 1

```
2
```

Explanation 1

Using the same logic as in previous sample, we can deduce that au(x)=0 is good and au(x)=1 is bad. Let's take a look into au(x)=x and au(x)=x

- au(x)=x. After substitution we get $a1\,AND\,0=0$ which is always true.
- $au(x)=x\ XOR\ 1$. Now we get $(a1\ XOR\ 1)\ AND\ 1=0$. It is wrong for a1=0.

That leaves us with only two good au.

Sample Input 2

```
2
2
a1&a2
a1&a2+1
a1
a1&a2+1
2
1
a1
a1
a1&a2+a1+1
a1
```

Sample Output 2

```
4
5
```

Sample Input 3

```
2
3
a2&a3+a1&a3+a1
a1&a2&a3+a2&a3+a2
a2&a3+a2&a3+a2
a1&a2&a3+a1&a3
a2&a3+a1&a3+a1&a2+a2
a2&a3+a1&a3+a1&a2+a1
3
a1&a2&a3+a2&a3+a1&a2+a1
a1&a2&a3+a2&a3+a1&a2+a1
a1&a2&a3+a2&a3+a1&a2+a1
a1&a2&a3+a2&a3+a1&a2+a1
a1&a2&a3+a2&a3+a1&a2+a1
a1&a2&a3+a2&a3+a1&a2+a1+1
a1&a2&a3+a2&a3+a1&a2+a2+a1+1
a1&a2&a3+a2&a3+a1&a2+a2+a1+1
a1&a2&a3+a1&a2+a2+a1+1
```

Sample Output 3

```
48
80
```