For a positive integer n, let $\sigma_{2}(n)$ be the sum of the squares of its divisors. For example, $\sigma_{2}(10)=1+4+25+100=130$.

You are given two integers N and K, you need to find the sum of all $1 \leq n \leq N$ such that $\sigma_{2}(n)$ is at most K away from a perfect square.

Input Format

The first line of each test file contains a single integer q which is the number of queries. Each of the next q lines contains two space-separated integers, N and K.

Constraints

- $1 \leq q \leq 10^{5}$.
- $1 \leq N \leq 6 \times 10^{6}$.
- $0 \leq K \leq 10^{6}$.

Output Format

Print the answer to each query in a new line.

Sample Input

```
11
650
2691
3 1 2 2
745 3
1457 4
16865
1882 6
4 2 7 0 7
6 2 4 2 8
9838 9
9868 10
```


Sample Output

[^0]```
2 7 8 0 1 5
1218448
2443417
5802272
5851533
```


## Explanation

For the first one, the only integers less than 65 for which $\sigma_{2}(n)$ is a square are 1 and 42 , hence the answer is 43.


[^0]:    43
    7341
    9651
    46264
    167332
    226094

