Project Euler \# 216: Investigating the primality of numbers of the form 2n²-1

This problem is a programming version of Problem 216 from projecteuler.net
Consider three integers a, b and c where $a>0, \operatorname{gcd}(a, b, c)=1$ and $b^{2}-4 a c$ is not the square of an integer.

Let the second degree polynomial $P=a X^{2}+b X+c$. In this challenge, we will be interested in the prime values of $P(n)$ for integers $n \geq 0$.
E.g. with $a=2, b=0$ and $c=-1$, the first such prime numbers are $7,17,31,71,97,127$ and 199 .

How many numbers $P(n)$ are prime for $0 \leq n \leq N$?

Input Format

The first line of each test case contains three space-separated integers a, b and c.
The second line contains a single integer q which is the number of queries.
Each of the next q lines contains a value of N.

Constraints

- $1 \leq q \leq 10^{5}$.
- $a \in\{1,2\}$.
- $|b| \leq 100$.
- $|c| \leq 10^{7}$.
- $\operatorname{gcd}(a, b, c)=1$ and $b^{2}-4 a c$ is not a perfect square.
- $0 \leq N \leq 10^{7}$.

Output Format

Print the answer to each query in a new line.

Sample Input 0

```
2 0-1
1
1 0
```


Sample Output 0

7

Explanation 0

The values of $P(n)=2 n^{2}-1$ for $0 \leq n \leq 10$ are :

$$
[-1,1,7,17,31,49,71,97,127,161,199]
$$

Only $[7,17,31,71,97,127,199]$ are prime. Hence the answer is 7 .

Sample Input 1

```
2 1
1
20
```


Sample Output 1

4

Explanation 1

The evaluation of $P(n)=2 n^{2}+1$ for $0 \leq n \leq 20$ yields to :

$$
[1,3,9,19,33,51,73,99,129,163,201,243,289,339,393,451,513,579,649,723,801]
$$

The prime values in this list are $[3,19,73,163]$. Therefore the answer is 4 .

Sample Input 2

```
1 0 1
1
1 3
```


Sample Output 2

5

Explanation 2

There exist 5 prime numbers of the form $n^{2}+1$ where $0 \leq n \leq 13:[2,5,17,37,101]$.

