Project Euler \#218: Perfect right-angled triangles

This problem is a programming version of Problem 218 from projecteuler.net
Consider the right angled triangle with sides $a=7, b=24$ and $c=25$. The area of this triangle is 84 , which is divisible by the perfect numbers 6 and 28 .
Moreover it is a primitive right angled triangle as $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(b, c)=1$.
Also c is a perfect square.
We will call a right angled triangle perfect if

- it is a primitive right angled triangle
- its hypotenuse is a perfect square

We will call a right angled triangle super-perfect if

- it is a perfect right angled triangle and
- its area is a multiple of the perfect numbers 6 and 28 .

How many perfect right-angled triangles with $c \leq n$ exist that are not super-perfect?

Input Format

First line of each test file contains a single integer q that is the number of queries. q lines follow, each containing an integer n - an upper bound of the largest side of the triangle.

Constraints

- $1 \leq q \leq 100000$
- $25 \leq n \leq 2 \times 10^{18}$

Output Format

Print exactly q lines with a single integer on each: an answer to the corresponding query.

Sample Input 0

```
1
```

25

Sample Output 0

As we can see from the problem statement, the only perfect triangle with $c \leq 25$ is super-perfect.

