Project Euler \#226: A Scoop of Blancmange

For any real number x, define $d(x)$ as the distance from x to its nearest integer.
Let $r, s \geq 2$ be positive integers and consider the function $f_{r, s}$ defined on the real inteval $[0,1]$ by:

$$
f_{r, s}(x)=\sum_{n \geq 0} \frac{d\left(r^{n} x\right)}{s^{n}}
$$

For example, when $r=s=2$ we get the blancmange function shown bellow

Given a polynomial $P=\sum_{i=0}^{m} a_{i} X^{i}$, where a_{i} are integers. Let

$$
I=\int_{0}^{1} f_{r, s}(x) P(x) d x
$$

It can be proved that I is a rational number, therefore we can write it as $I=\frac{p}{q}$ where p and q are integers. In addition, the constraints on the inputs guarantee that q is not divisible by the prime number 1004535809. In this case, find $p \cdot q^{-1}$ modulo 1004535809 (q^{-1} is the the inverse of q modulo 1004535809).

Input Format

The first line of each test file contains three space-separated integers r, s and m.
The next line contains $m+1$ space-separated integers a_{0}, \ldots, a_{m}.

Constraints

- $2 \leq r, s \leq 10^{9}$.
- $0 \leq m \leq 2 \cdot 10^{5}$.
- $s \cdot r^{i}-1$ is not divisible by 1004535809 for all $0 \leq i \leq m+1$.
- $0 \leq a_{i} \leq 10^{9}$.
- $a_{m}>0$.

Output Format

Print your answer in one line.

Sample Input 0

```
2 }
```

1

Sample Output 0

502267905

Explanation 0

The graph of $f_{2,2}$ is shown in the statement.
$I=\int_{0}^{1} f_{2,2}(x) d x=\frac{1}{2}$, hence $I=1 \cdot 2^{-1}=502267905 \bmod 1004535809$.

Sample Input 1

```
2 30
```

1

Sample Output 1

627834881

Explanation 1

Below is the graph of $f_{2,3}$

$I=\int_{0}^{1} f_{2,3}(x) d x=\frac{3}{8}$, hence $I=3 \cdot 8^{-1}=3 \cdot 878968833=627834881 \bmod 1004535809$.

Sample Input 2

```
2 2 1
01
```


Sample Output 2

Explanation 2

The following is the graph of $x \rightarrow x f_{2,2}(x)$

$I=\int_{0}^{1} x f_{2,2}(x) d x=\frac{1}{4}$, hence $I=1 \cdot 4^{-1}=753401857 \bmod 1004535809$.
Sample Input 3

42575
$490 \quad 480 \quad 625 \quad 34 \quad 405 \quad 968$

Sample Output 3

617014829

