Project Euler \#228: Minkowski Sums

This problem is a programming version of Problem 228 from projecteuler.net
Let S_{n} be the regular n-sided polygon - or shape - whose vertices $v_{k}(k=1,2, \ldots, n)$ have coordinates:

$$
\begin{aligned}
& x_{k}=\cos \left(\frac{(2 k-1) \pi}{n}\right) \\
& y_{k}=\sin \left(\frac{(2 k-1) \pi}{n}\right)
\end{aligned}
$$

Each S_{n} is to be interpreted as a filled shape consisting of all points on the perimeter and in the interior.

The Minkowski sum, $S+T$, of two shapes S and T is the result of adding every point in S to every point in T, where point addition is performed coordinate-wise: $(u, v)+(x, y)=(u+x, v+y)$.

For example, the sum of S_{3} and S_{4} is the six-sided shape shown in pink below:

Given two integers L and R, how many sides does the Minkowski sum $\sum_{i=L}^{R} S_{i}$ have?

Input Format

The first line of each test file contains a single integer q which is the number of queries. Each of the next q lines contains two space-separated integers, L and R.

Constraints

- $1 \leq q \leq 10^{4}$.
- $3 \leq L \leq R$.
- The sum of R over all queries $\leq 4 \times 10^{10}$.

Output Format
Print the answer to each query in a new line.
Sample Input 0
\square

Sample Output 0

6

Explanation 0

The figure in the problem description shows $S_{3}+S_{4}$.
We can see that the number of sides of that shape is 6 .

Sample Input 1

\square
45

Sample Output 1

8

Explanation 1

Sample Input 2

Sample Output 2

Explanation 2

