Project Euler \#229: Four Representations using Squares

This problem is a programming version of Problem 229 from projecteuler.net
Consider the number 3600 . It is very special, because

$$
3600=48^{2}+36^{2}
$$

$$
3600=20^{2}+2 \times 40^{2}
$$

$$
3600=30^{2}+3 \times 30^{2}
$$

$$
3600=45^{2}+7 \times 15^{2}
$$

Similarly, we find that $88201=99^{2}+280^{2}=287^{2}+2 \times 54^{2}=283^{2}+3 \times 52^{2}=197^{2}+7 \times 84^{2}$
In 1747, Euler proved which numbers are representable as a sum of two squares. We are interested in the numbers n which admit representations of all of the following types:

$$
n=a_{1}^{2}+b_{1}^{2}
$$

$$
n=a_{2}^{2}+2 \times b_{2}^{2}
$$

$$
n=a_{3}^{2}+3 \times b_{3}^{2}
$$

$$
n=a_{7}^{2}+7 \times b_{7}^{2}
$$

where the a_{k} and b_{k} are positive integers.
There are 75373 such numbers that do not exceed 10^{7}.
How many such numbers are there that do not exceed N ?

Input Format

First line of each test file contains a single integer q which is the number of queries per test file. q lines follow, each containing a single integer N.

Constraints

- $1 \leq q \leq 1000$
- $200 \leq N \leq 5 \times 10^{9}$
- Sum of all N per test file $\leq 5 \times 10^{9}$

Output Format

For each query print exactly one number that is the answer to the problem on the separate line.
Sample Input 0

2
200
10000000

Sample Output 0

1
75373

Explanation 0

The smallest very special number is 193.

