Project Euler \# 230: Fibonacci Words

This problem is a programming version of Problem 230 from projecteuler.net
For any two strings of digits, A and B, we define $F_{A, B}$ to be the sequence ($A, B, A B, B A B, A B B A B$, ...) in which each term is the concatenation of the previous two.

Further, we define $D_{A, B}(n)$ to be the n-th digit in the first term of $F_{A, B}$ that contains at least n digits.
Example:
Let $A=1415926535, B=8979323846$. We wish to find $D_{A, B}(35)$, say.
The first few terms of $F_{A, B}$ are:

- 1415926535
- 8979323846
- 14159265358979323846
- 897932384614159265358979323846
- 14159265358979323846897932384614159265358979323846

Then $D_{A, B}(35)$ is the 35 -th digit in the fifth term, which is 9 .
You are given q triples (A, B, n). For all of them find $D_{A, B}(n)$.

Input Format

First line of each test file contains a single integer q that is the number of triples. Then q lines follow, each containing two strings of decimal digits a and b and positive integer n.

Constraints

- $1 \leq q \leq 100$
- $1 \leq$ length (a), length $(b) \leq 100$
- $1 \leq n \leq 2^{100}$

Output Format

Print exactly q lines with a single decimal digit on each: value of $D_{A, B}(n)$ for the corresponding triple.

Sample Input 0

8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196
104683731294243150

Sample Output 0

9
8

