## Project Euler \# 233: Lattice points on a circle

This problem is a programming version of Problem 233 from projecteuler.net
Let $f(n)$ be the number of points with integer coordinates that are on a circle passing through $(0,0)$, $(n, 0),(0, n)$ and $(n, n)$.

It can be shown that $f(10000)=36$.
Given two integers $N$ and $m$, what is the number of all positive integers $n \leq N$ such that $f(n)=4 m$ ?

## Input Format

The first line of each test file contains a single integer $q$ which is the number of queries.
Each of the next $q$ lines contains two space-separated integers $N$ and $m$.

## Constraints

- $1 \leq m \leq 200$.
- $m$ is an odd squarefree integer.
- In testfiles 3 to 29:
- $1 \leq q \leq 20$.
- $1 \leq N \leq 10^{9}$.
- In testfile 30 and above:
- $q=1$.
- $1 \leq N \leq 5 \times 10^{10}$ when $m=3$.
- $1 \leq N \leq 10^{11}$ when $m \neq 3$.


## Output Format

Print the answer to each query on a new line.

## Sample Input 0

## 1

10001

## Sample Output 0

## Sample Input 1

1
10000000000087

## Sample Output 1

```
1
```


## Explanation 1

The only integer $n$ less than $10^{11}$ such that $f(n)=348$ is 79345703125 .

## Sample Input 2

1
10000000000031

## Sample Output 2

3

## Explanation 2

There exist only three integers $n \leq 10^{11}$ such that $f(n)=124: 30517578125,61035156250$ and 91552734375.

