Project Euler \# 234: Semidivisible numbers

This problem is a programming version of Problem 234 from projecteuler.net

For an integer $n \geq 4$, we define the lower prime square root of n, denoted by $\operatorname{lps}(n)$, as the largest prime $\leq \sqrt{n}$ and the upper prime square root of $n, \operatorname{ups}(n)$, as the smallest prime $\geq \sqrt{n}$.

So, for example, $\operatorname{lps}(4)=2=\operatorname{ups}(4), \operatorname{lps}(1000)=31, \operatorname{ups}(1000)=37$.

Let us call an integer $n \geq 4$ semidivisible, if one of $\operatorname{lps}(n)$ and $\operatorname{ups}(n)$ divides n, but not both.

The sum of the semidivisible numbers not exceeding 15 is 30 , the numbers are 8,10 and 12 .
15 is not semidivisible because it is a multiple of both $\operatorname{lps}(15)=3$ and $\operatorname{ups}(15)=5$.

As a further example, the sum of the 92 semidivisible numbers up to 1000 is 34825 .

Given two integers L and R, what is the sum of all semidivisible numbers $L \leq n \leq R$? Print your answer modulo 1004535809 .

Input Format

The only line of each test file contains two space-separated integers: L and R.

Constraints

- $4 \leq L \leq R \leq 10^{18}$.
- $R-L \leq 10^{16}$.

Output Format

Print the answer modulo 1004535809.
Sample Input 0

```
4 15
```


Sample Output 0

Explanation 0

There are three semidivisble integers $4 \leq n \leq 15: 8,10$ and 12 .

Sample Input 1

1045

Sample Output 1

290

Explanation 1

The only 11 semidivisble integers $10 \leq n \leq 45$: are $10,12,18,20,21,24,28,30,40,42$ and 45 .

Sample Input 2

```
100150
```


Sample Output 2

708

Explanation 2

The only 6 semidivisble integers $100 \leq n \leq 150$ are: $105,110,112,119,130$ and 132 .

