Project Euler \# 237: Tours on a $4 \times n$ playing board

This problem is a programming version of Problem 237 from projecteuler.net
Let $T(m, n)$ be the number of tours over an $m \times n$ playing board such that:

- The tour starts in the top left corner;
- The tour consists of moves that are up, down, left, or right one square;
- The tour visits each square exactly once;
- The tour ends in the bottom left corner.

The following diagram shows one tour over a 4×10 board:

Define $S(m, n)=\sum_{i=1}^{n} T(m, i)$. It can be shown that $T(4,10)=2329$ and $S(4,10)=3846$.

Given integers m and n, what is $S(m, n)$?
Since the answer can be quite large, express your solution modulo $10^{9}+7$.

Input Format

Each test file contains 2 lines. The first line contains m and the second n.

Constraints

- $4 \leq m \leq 8$.
- $1 \leq n \leq 5 \times 10^{18}$.

Output Format

Print the integer value of your answer modulo $10^{9}+7$.

Sample Input 0

4
3

Sample Output 0

Explanation 0

It is easily seen that $T(4,1)=1$ and $T(4,2)=1$. Also, $T(4,3)=4$ since the 4×3 case has the following four solutions:

Thus $S(4,3)=T(4,1)+T(4,2)+T(4,3)=1+1+4=6$.

