Project Euler \# 238: Infinite string tour

Create a sequence of numbers using the pseudo-random number generator:
$s_{0}=4$
$s_{n+1} \equiv s_{n}^{5}(\bmod 16710461)$
Concatenate these numbers $s_{0} s_{1} s_{2} \ldots$ to create a string w of infinite length.
Then, $w=41024115686749788043194661412184143163431 \ldots$
For a positive integer k, if no substring of w exists with a sum of digits equal to $k, p(k)$ is defined to be zero. If at least one substring of w exists with a sum of digits equal to k, we define $p(k)=i$, where i is the starting position of the earliest such substring. The string w is 1 -based indexed.

For instance:
The substrings " 4 ", " 41 " and " 4102 " with respective sums of digits equal to 4,5 and 7 start at position 1, hence $p(4)=p(5)=p(7)=1$.

The substrings " 1 " and "102" with respective sums of digits equal to 1 and 3 start at position 2 , hence $p(1)=p(3)=2$. Note that the substring " 1024 " starting at position 2 , has a sum of digits equal to 7 , but there was an earlier substring (starting at position 1) with a sum of digits equal to 7 , so $p(7)=1$, not 2 .

Let $P_{e}(N)=\sum_{k=1}^{N} p(k) k^{e}$.
Given two integers e and N, find $P_{e}(N)$ modulo 1004535809 .

Input Format

The only line of each test file contains two space-separated integers e and N.

Constraints

- $0 \leq e \leq 10^{5}$.
- $1 \leq N \leq 10^{18}$.
- The time limit is the double of the usual time limit.

Output Format

Print a single integer denoting $P_{e}(N)$ modulo 1004535809.

Sample Input 0

Sample Output 0

38

Sample Input 1

18

Sample Output 1

64

Sample Input 2

2100

Sample Output 2

```
2035208
```


Sample Input 3

1000001000000000000000000

Sample Output 3

