## Project Euler \# 239: Twenty-two Foolish Primes

This problem is a programming version of Problem 239 from projecteuler.net
A set of disks numbered 1 through $n$ are placed in a line in random order.
What is the probability that we have a partial derangement such that exactly $k$ prime number discs are found away from their natural positions? (Any number of non-prime disks may also be found in or out of their natural positions.)

It can be shown that for a given constraints the answer can be represented as $\frac{a}{b}$, where $a$ and $b$ are coprime positive integers and $b \not \equiv 0\left(\bmod 10^{9}+123\right)$. Print the value of $a \cdot b^{-1}$ modulo $10^{9}+123$.

## Input Format

The only line of input contains two integers $n$ and $k$ separated by single space.

## Constraints

- $2 \leq n \leq 10000000$
- $1 \leq k \leq P(n)$ where $P(n)$ is number of primes in range from 1 to $n$ inclusive.


## Output Format

Print the only line with the answer.

## Sample Input 0

```
10 3
```


## Sample Output 0

```
498412760
```


## Explanation 0

The actual value of $\frac{a}{b}$ is $\frac{89}{315}$.

