## Project Euler \#241: Perfection Quotients

For a positive integer $n$, let $\sigma(n)$ be the sum of all divisors of $n$, so e.g. $\sigma(6)=1+2+3+6=12$. A perfect number, as you probably know, is a number with $\sigma(n)=2 \times n$.

Let us define the perfection quotient of a positive integer as $p(n)=\frac{\sigma(n)}{n}$.
Find the sum of all positive integers $1 \leq n \leq N$ for which $p(n)$ has the form $k+\frac{1}{2}$, where $k$ is an integer.

## Input Format

The only line of input contains integer $N$.

## Constraints

- $2 \leq N \leq 10^{23}$


## Output Format

Print the only line with the answer.

## Sample Input 0

$$
10
$$

## Sample Output 0

## Explanation 0

The only suitable number from 1 to 10 is 2 .
$\sigma(2)=1+2=3$
$p(2)=\frac{\sigma(2)}{2}=\frac{3}{2}=1.5$.

## Sample Input 1

## 100

## Sample Output 1

## Explanation 1

24 is the next suitable number after 2 . There are no other suitable numbers between 1 and 100 .

$$
\begin{aligned}
& \sigma(24)=1+2+3+4+6+8+12+24=60 \\
& p(24)=\frac{\sigma(24)}{24}=\frac{60}{24}=2.5
\end{aligned}
$$

