HackerRank

Project Euler #241: Perfection Quotients

For a positive integer n, let $\sigma(n)$ be the sum of all divisors of n, so e.g. $\sigma(6) = 1 + 2 + 3 + 6 = 12$.

A perfect number, as you probably know, is a number with $\sigma(n)=2 imes n$.

Let us define the perfection quotient of a positive integer as $p(n) = rac{\sigma(n)}{n}$.

Find the sum of all positive integers $1 \le n \le N$ for which p(n) has the form $k + \frac{1}{2}$, where k is an integer.

Input Format

The only line of input contains integer N.

Constraints

• $2 \leq N \leq 10^{23}$

Output Format

Print the only line with the answer.

Sample Input 0

10

Sample Output 0

2

Explanation 0

The only suitable number from 1 to 10 is 2.

$$\sigma(2) = 1 + 2 = 3$$

$$p(2) = rac{\sigma(2)}{2} = rac{3}{2} = 1.5.$$

Sample Input 1

100

Sample Output 1

Explanation 1

24 is the next suitable number after 2. There are no other suitable numbers between 1 and 100.

 $\sigma(24) = 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60$

 $p(24) = rac{\sigma(24)}{24} = rac{60}{24} = 2.5$