Project Euler \#245:
 Coresilience

This problem is a programming version of Problem 245 from projecteuler.net
We shall call a fraction that cannot be cancelled down a resilient fraction.

Furthermore we shall define the resilience of a denominator, $R(d)$, to be the ratio of its proper fractions that are resilient; for example, consider $d=12$. The 11 proper fractions with a 12 denominator are $1 / 12,2 / 12,3 / 12, \ldots, 11 / 12$. Four of these cannot be cancelled down, so the resilience is $R(12)=4 / 11$.

The resilience of a number $d>1$ is then

$$
R(d)=\frac{\varphi(d)}{d-1}
$$

where φ is Euler's totient function.
We further define the coresilience of a number $n>1$ as

$$
C(n)=\frac{n-\varphi(n)}{n-1}
$$

Given an integer N, find the sum of all integers $1<n \leq N$ for which $C(n)$ is a unit fraction, that is, a fraction with a numerator of 1 after cancelling down.

Input Format

Each test file contains a single line containing a single integer N.

Constraints

$2 \leq N \leq 10^{11}$

Output Format

Print the integer value of the sum of all integers $1<n \leq N$ for which $C(n)$ is a unit fraction.

Sample Input 0

5

Sample Output 0

Explanation 0

$\begin{array}{lllll}\text { Integer } & 2 & 3 & 4 & 5\end{array}$

The sum of integers with Coresilience a unit fraction: $2+3+5=10$.

