Project Euler \#247: Squares under a hyperbola

This problem is a programming version of Problem 247 from projecteuler.net
Consider the region constrained by $1 \leq x$ and $0 \leq y \leq \frac{1}{x}$.
Let S_{1} be the largest square that can fit under the curve.
Let S_{2} be the largest square that fits in the remaining area, and so on.
Let the index of S_{n} be the pair (left, below) indicating the number of squares to the left of S_{n} and the number of squares below S_{n}.

The diagram shows some such squares labelled by number.
S_{2} has one square to its left and none below, so the index of S_{2} is $(1,0)$.
It can be seen that the index of S_{32} is $(1,1)$ as is the index of S_{50}.
50 is the largest n for which the index of S_{n} is $(1,1)$.
What is the k-th largest n for which the index of S_{n} is (l, b) ?

Input Format

First line of each test file contains three integers separated by single spaces: k, l and b.

Constraints

- $1 \leq k \leq$ number of such n that index of S_{n} is (l, b)
- $0 \leq l, b$
- For every l and b from the test files the maximum possible answer is less than 4×10^{7}

Output Format

Print exactly one number which is the answer to the problem.

Sample Input 0

```
10}
```


Sample Output 0

Sample Input 1

```
    1 1 1
```


Sample Output 1

[^0]
[^0]: 50

