HackerRank

Project Euler #249: Prime Subset Sums

Let $S = \{2, 3, 5, \dots\}$ be the set of prime numbers less than n.

Find the number of subsets of S, the sum of whose elements is a prime number. Print this number modulo 10^{16} . You should find this number for several values of n.

Input Format

The first line of input contains integer k – number of values of n.

The second line of input contains k values of n separated by spaces.

Constraints

- $1 \le k \le 100$
- $3 \le n \le 7\,000$

Output Format

Print k numbers separated by space — your answers in corresponding order.

Sample Input 0

2 10 4

Sample Output 0

73

Explanation 0

There are four prime numbers under 10: 2, 3, 5 and 7. There are exactly seven ways to choose a subset with prime sum: $\{2\}$, $\{3\}$, $\{5\}$, $\{7\}$, $\{2,3\}$, $\{2,5\}$, $\{2,3,5,7\}$. Only three of these subset consist of numbers under 4.