Project Euler \# 251: Cardano Triplets

This problem is a programming version of Problem 251 from projecteuler.net
A triplet of positive integers (a, b, c) is called a Cardano Triplet if it satisfies the condition:
$\sqrt[3]{a+b \sqrt{c}}+\sqrt[3]{a-b \sqrt{c}}=1$
For example, $(2,1,5)$ is a Cardano Triplet.
There exist 149 Cardano Triplets for which $a+b+c \leq 1000$.
Find how many Cardano Triplets exist such that $a+b+c \leq n$.

Input Format

The first line of each test file contains a single integer q, which is the number of queries. q lines follow, each containing the corresponding n.

Constraints

- $1 \leq q \leq 10$
- $8 \leq n \leq 5 \times 10^{8}$

OR

- $1 \leq q \leq 2$
- $8 \leq n \leq 5 \times 10^{9}$

OR

- $q=1$
- $8 \leq n \leq 2 \times 10^{10}$

Output Format

Print exactly q lines with the answer to the corresponding query on each one.

Sample Input 0

```
2
8
1000
```


Sample Output 0

Explanation 0

$(2,1,5)$ is the only triplet with the sum ≤ 8.

Sample Input 1

2
999999069
999999550

Sample Output 1

172332336
172332416

