Project Euler \# 246: Tangents to an ellipse

This problem is a programming version of Problem 246 from projecteuler.net
A definition for an ellipse is:
Given a circle c with centre M and radius r and a point G such that $d(G, M)<r$, the locus of the points that are equidistant from c and G form an ellipse.

The construction of the points of the ellipse is shown below.

Given are the points $M\left(x_{1}, y\right)$ and $G\left(x_{2}, y\right)$.
Given is also the circle c with centre M and radius r.
The locus of the points that are equidistant from G and c form an ellipse e.
From a point P outside e the two tangents t_{1} and t_{2} to the ellipse are drawn. Let the points where t_{1} and t_{2} touch the ellipse be R and S.

For how many lattice points P is angle $R P S$ greater than d degrees?

Input Format

First line of each test file contains three integers separated by single spaces: x_{1}, x_{2} and y.
Second line of each test file contains a single integer r.
Third line of each test file contains two integers p and q separated by a single space which represent the angle d in such a way that $\tan d=\frac{p}{q}$.

Constraints

- $-10^{5} \leq x_{1}, x_{2}, y \leq 10^{5}$
- $1 \leq r \leq 32000$
- $0<\left|x_{1}-x_{2}\right|<r$
- $\left|x_{1}-x_{2}\right|$ is even
- $0<p, q<30$
- d is acute

Output Format

Print exactly one number which is the answer to the problem.

Sample Input 0

```
64817 64819 11420
3
30 1
```


Sample Output 0

4

Explanation 0

These 4 points are $(64817,11419),(64819,11419),(64817,11421)$ and $(64819,11421)$.

Sample Input 1

```
-13896 -13894 43360
3
1 1
```


Sample Output 1

