• + 0 comments

    What is wrong with the solution?

    #!/bin/python3
    
    import math
    import os
    import random
    import re
    import sys
    
    #
    # Complete the 'gridWalking' function below.
    #
    # The function is expected to return an INTEGER.
    # The function accepts following parameters:
    #  1. INTEGER m
    #  2. INTEGER_ARRAY x
    #  3. INTEGER_ARRAY D
    #
    M=10**9+7
    _dp_d=dict()
    _dp_result=dict()
    _dp_binomial_mod_M=[]
    
    def _hash(m, x, d):
        return str(m)+" "+str(x)+" "+str(d)
        
    def _dp_dimension(m, x, d):
        global _dp_d
        h=_hash(m, x, d)
        if h in _dp_d:
            return _dp_d[h]
        if m==1:
            _dp_d[h]=2 if x<d and x>1 else 1 if x<d or x>1 else 0
            return _dp_d[h]
        _dp_d[h]=0
        if x>1:
            _dp_d[h]+=_dp_dimension(m-1, x-1, d) % M
        if x<d:
            _dp_d[h]+=_dp_dimension(m-1, x+1, d) % M
        return _dp_d[h] % M
            
            
    def _build_binomial_mod_M():
        global _dp_binomial_mod_M
        _dp_binomial_mod_M=[[1 for _ in range(102)] for _ in range(102)]
        _dp_binomial_mod_M[100][99]=100
        # TBD build binomial mod M only if bnomial mod is needed
        for i in range(101):
            _dp_binomial_mod_M[i][1]=i
        for i in range(2, 101):
            for j in range(2, i):
                _dp_binomial_mod_M[i][j]*= _dp_binomial_mod_M[i-1][j] % M + _dp_binomial_mod_M[i-1][j-1] % M %M
           
        
    def _fact(n):
        global _dp_fact_mod_M
        return _dp_fact_mod_M[n]
        
    
    def _binomial(x, k):
        global _dp_binomial_mod_M
        return _dp_binomial_mod_M[x][k]
        
        
    def _next_walk(m, x, D):
        _count=0
        global _dp_d
        h=_hash(m, x, D)
        _build_binomial_mod_M()
        if h in _dp_d:
           return _dp_d[h]
        _last=0
        print( 20*"*", m, x, D)
        for i, d in enumerate(D):
            print(10*"*", d, 10*"*")
            _count=0
            if i==0:
               _last+=_dp_dimension(m, x[i], d)
               print(_last)
               continue
            for s in range(m):
                _count+=_last*_binomial(m, s)*_dp_dimension(m-s, x[i], d) % M % M
                print(f"binomial {_binomial(m, s)} _count {_count} m-s {m-s} dimension {_dp_dimension(m-s, x[i], d)}")
            _last+=_count
                
            print(f"m {m}, x[i], {x[i]}, d, {d},_dp_dimension {_dp_dimension(m, x[i], d)}")
        return _last % M    
        
        
    def gridWalking(m, x, D):
        return _next_walk(m, x, D)
        # Write your code here
    
    if __name__ == '__main__':
        fptr = open(os.environ['OUTPUT_PATH'], 'w')
    
        t = int(input().strip())
        _build_binomial_mod_M()
        for t_itr in range(t):
            first_multiple_input = input().rstrip().split()
    
            n = int(first_multiple_input[0])
    
            m = int(first_multiple_input[1])
    
            x = list(map(int, input().rstrip().split()))
    
            D = list(map(int, input().rstrip().split()))
    
            result = gridWalking(m, x, D)
    
            fptr.write(str(result) + '\n')
    
        fptr.close()