• + 0 comments

    Multiple Linear Regression: Predicting House Prices Incase you need some help.

    import numpy as np
    from sklearn.linear_model import LinearRegression
    
    F, N = map(int, input().split())
    data = [list(map(float, input().split())) for i in range(N)]
    data = np.array(data)
    
    X_train, y_train = data[:, :-1], data[:, -1]
    
    T = int(input())
    
    X_test = [list(map(float, input().split())) for i in range(T)]
    X_test = np.array(X_test)
    
    model = LinearRegression()
    model.fit(X_train, y_train)
    
    predictions = model.predict(X_test)
    
    for result in predictions:
        print(round(result, 2))