We use cookies to ensure you have the best browsing experience on our website. Please read our cookie policy for more information about how we use cookies.
# Enter your code here. Read input from STDIN. Print output to STDOUTimportnumpyasnpfromsklearn.preprocessingimportPolynomialFeaturesfromsklearn.linear_modelimportLinearRegressionF,N=map(int,input().split())data=[list(map(float,input().split()))foriinrange(N)]data=np.array(data)X_train,y_train=data[:,:-1],data[:,-1]T=int(input())X_test=[list(map(float,input().split()))foriinrange(T)]X_test=np.array(X_test)degree=3poly=PolynomialFeatures(degree)X_train_poly=poly.fit_transform(X_train)X_test_poly=poly.transform(X_test)model=LinearRegression()model.fit(X_train_poly,y_train)predictions=model.predict(X_test_poly)forpinpredictions:print(round(p,2))
Cookie support is required to access HackerRank
Seems like cookies are disabled on this browser, please enable them to open this website
Polynomial Regression: Office Prices
You are viewing a single comment's thread. Return to all comments →