You are viewing a single comment's thread. Return to all comments →
import numpy as np import pandas as pd from functools import reduce from scipy.stats import norm
i = int(input()) l = input() ls = list(map(lambda x: int(x), l.split()))
def mean(ls, n): return reduce(lambda acc, cur : acc + cur, ls, 0) / n
def median(ls, n): ls_sort = ls ls_sort.sort() if n % 2 != 0: return ls_sort[int(n / 2)]
return (ls_sort[int(n / 2)] + ls_sort[int(n / 2) - 1]) / 2
def mode(ls, n): keys = list(set(ls)) keys.sort() freq_el = {} for key in keys: freq_el[key] = 0
for el in ls: freq_el[el] += 1 sorted_freq = dict(sorted(freq_el.items(), key = lambda item : item[1], reverse = True)) return list(sorted_freq.keys())[0]
def std(ls, n): m = mean(ls, n) st = ((reduce(lambda acc, cur: acc + (cur - m)**2 , ls, 0)) / n)**0.5 return round(st, 1)
def Confidence_Interval(ls, n): m = mean(ls, n) st = std(ls, n) # z_score = norm.ppf(0.975) z_score = 1.96
upperBound = m + z_score * (st / n**0.5) lowerBound = m - z_score * (st / n**0.5) return (round(lowerBound, 1), round(upperBound, 1))
print(mean(ls, i)) print(median(ls, i)) print(mode(ls, i)) print(std(ls, i)) print(*Confidence_Interval(ls, i))
Seems like cookies are disabled on this browser, please enable them to open this website
Basic Statistics Warmup
You are viewing a single comment's thread. Return to all comments →
Enter your code here. Read input from STDIN. Print output to STDOUT
import numpy as np import pandas as pd from functools import reduce from scipy.stats import norm
i = int(input()) l = input() ls = list(map(lambda x: int(x), l.split()))
def mean(ls, n): return reduce(lambda acc, cur : acc + cur, ls, 0) / n
def median(ls, n): ls_sort = ls ls_sort.sort() if n % 2 != 0: return ls_sort[int(n / 2)]
def mode(ls, n): keys = list(set(ls)) keys.sort() freq_el = {} for key in keys: freq_el[key] = 0
def std(ls, n): m = mean(ls, n) st = ((reduce(lambda acc, cur: acc + (cur - m)**2 , ls, 0)) / n)**0.5 return round(st, 1)
def Confidence_Interval(ls, n): m = mean(ls, n) st = std(ls, n) # z_score = norm.ppf(0.975) z_score = 1.96
print(mean(ls, i))
print(median(ls, i))
print(mode(ls, i))
print(std(ls, i)) print(*Confidence_Interval(ls, i))