• + 0 comments

    Enter your code here. Read input from STDIN. Print output to STDOUT

    import numpy as np import pandas as pd from functools import reduce from scipy.stats import norm

    i = int(input()) l = input() ls = list(map(lambda x: int(x), l.split()))

    def mean(ls, n): return reduce(lambda acc, cur : acc + cur, ls, 0) / n

    def median(ls, n): ls_sort = ls ls_sort.sort() if n % 2 != 0: return ls_sort[int(n / 2)]

    return (ls_sort[int(n / 2)] + ls_sort[int(n / 2) - 1]) / 2
    

    def mode(ls, n): keys = list(set(ls)) keys.sort() freq_el = {} for key in keys: freq_el[key] = 0

    for el in ls:
        freq_el[el] += 1
    
    sorted_freq = dict(sorted(freq_el.items(), key = lambda item : item[1], reverse = True))
    
    return list(sorted_freq.keys())[0]
    

    def std(ls, n): m = mean(ls, n) st = ((reduce(lambda acc, cur: acc + (cur - m)**2 , ls, 0)) / n)**0.5 return round(st, 1)

    def Confidence_Interval(ls, n): m = mean(ls, n) st = std(ls, n) # z_score = norm.ppf(0.975) z_score = 1.96

    upperBound = m + z_score * (st / n**0.5)
    
    lowerBound = m - z_score * (st / n**0.5)
    
    return (round(lowerBound, 1), round(upperBound, 1))
    

    print(mean(ls, i))
    print(median(ls, i))
    print(mode(ls, i))
    print(std(ls, i)) print(*Confidence_Interval(ls, i))