• + 1 comment

    In this sequence, Sn = 1 + 3 + 5 + ...+ 2n-1, the first item is 1, the last item is (2n-1), there are altogether n items in the sequence. If you are asking how to sum all the items in an arithmetic progression, I can give you an example, 1+ 2 + ... + 100, you can see that 1+100 = 101, 2 + 99 = 101, 3 + 98 = 101, ... 49+ 52 = 101, 50 + 51 = 101, so you just need to pair the first and last item, and how many pairs are there? 50 pairs, so the sum is (1+100) * 100/ 2; I cannot think any more to explain this to you but I really think that link is sufficient enough