We use cookies to ensure you have the best browsing experience on our website. Please read our cookie policy for more information about how we use cookies.
  • Practice
  • Certification
  • Compete
  • Career Fair
  • Hiring developers?
  1. Practice
  2. Algorithms
  3. Implementation
  4. Number Line Jumps

Number Line Jumps

Problem
Submissions
Leaderboard
Discussions
Editorial

You are choreographing a circus show with various animals. For one act, you are given two kangaroos on a number line ready to jump in the positive direction (i.e, toward positive infinity).

  • The first kangaroo starts at location and moves at a rate of meters per jump.
  • The second kangaroo starts at location and moves at a rate of meters per jump.

You have to figure out a way to get both kangaroos at the same location at the same time as part of the show. If it is possible, return YES, otherwise return NO.

For example, kangaroo starts at with a jump distance and kangaroo starts at with a jump distance of . After one jump, they are both at , (, ), so our answer is YES.

Function Description

Complete the function kangaroo in the editor below. It should return YES if they reach the same position at the same time, or NO if they don't.

kangaroo has the following parameter(s):

  • x1, v1: integers, starting position and jump distance for kangaroo 1
  • x2, v2: integers, starting position and jump distance for kangaroo 2

Input Format

A single line of four space-separated integers denoting the respective values of , , , and .

Constraints

Output Format

Print YES if they can land on the same location at the same time; otherwise, print NO.

Note: The two kangaroos must land at the same location after making the same number of jumps.

Sample Input 0

0 3 4 2

Sample Output 0

YES

Explanation 0

The two kangaroos jump through the following sequence of locations:

image

From the image, it is clear that the kangaroos meet at the same location (number on the number line) after same number of jumps ( jumps), and we print YES.

Sample Input 1

0 2 5 3

Sample Output 1

NO

Explanation 1

The second kangaroo has a starting location that is ahead (further to the right) of the first kangaroo's starting location (i.e., ). Because the second kangaroo moves at a faster rate (meaning ) and is already ahead of the first kangaroo, the first kangaroo will never be able to catch up. Thus, we print NO.

Author

wanbo

Difficulty

Easy

Max Score

10

Submitted By

421657

Need Help?


View discussions
View editorial
View top submissions

rate this challenge

MORE DETAILS

Download problem statement
Download sample test cases
Suggest Edits
  • Contest Calendar
  • Blog
  • Scoring
  • Environment
  • FAQ
  • About Us
  • Support
  • Careers
  • Terms Of Service
  • Privacy Policy
  • Request a Feature